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Abstract—The paper addresses the problem of making
dependency-aware feature selection feasible in pattern recognition
problems of very high dimensionality. The idea of individually
best ranking is generalized to evaluate the contextual quality of
each feature in a series of randomly generated feature subsets.
Each random subset is evaluated by a criterion function of
arbitrary choice (permitting functions of high complexity). Even-
tually, the novel dependency-aware feature rank is computed,
expressing the average benefit of including a feature into feature
subsets. The method is efficient and generalizes well especially in
very-high-dimensional problems, where traditional context-aware
feature selection methods fail due to prohibitive computational
complexity or to over-fitting. The method is shown well capable of
over-performing the commonly applied individual ranking which
ignores important contextual information contained in data.

Index Terms—feature selection, high dimensionality, ranking,
generalization, over-fitting, stability, classification, machine learn-
ing, pattern recognition

I. INTRODUCTION

Dimensionality reduction (DR) is a vital step in many
machine learning and pattern recognition tasks. It is capable
of improving model interpretability, recognition performance,
accuracy, as well as economy of the designed system. In the
most general DR form – feature extraction (FE) [1] – a set
of new features is generated using a suitable transformation
from all original measurements. FE may reveal information
hardly accessible in original data. In the special simplified
case of FE – in feature selection (FS) [2]–[6] – also known
as variable or attribute selection, and in the more general
feature weighing (FW) [7] the original measurement meaning
is preserved; discarding irrelevant and redundant information
thus can reduce measurement acquisition cost as well as speed
up the learning process. FS is widely applied in various fields;
in supervised and unsupervised learning [1], [6], [8], [9],
remote sensing [10], [11], document categorization [12], image
retrieval [13], bio-informatics [14], [15], medical diagnostics
[16], etc.

An extensive battery of various types of FS tools is now
available (for overview see, e.g., [1], [3], [6], [8], [9], [17],
[18]). The common classification [1], [3] is to wrappers (direct
maximization of classification accuracy), filters (assessing the
merit of features directly from data), embedded (where FS is
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Fig. 1. Particular Feature Selection methods are usually well suited only for
particular problem settings. With increasing dimensionality and sample size
the battery of applicable FS tools diminishes quickly.

part of model optimization) and hybrids (combining the merits
of several approaches). Nevertheless, no single method can be
claimed generally best for all types of problems. Properties
like search speed, ability to find close-to-optimal results and
robustness against over-fitting are often contradicting each
other. In Figure 1 we illustrate briefly the applicability of
representative tools from current FS frameworks.

In recent years the focus of FS research is moving from
the relatively well covered area of low-to-mid-dimensional
recognition problems towards high- and very-high-dimensional
problems [19]. Very high dimensionality is common, e.g., in
bio-informatics and gene search [14], [15], text processing
[12], [20]–[22], image analysis [23], [24], etc. Very high
dimensionality is particularly challenging for two reasons:
curse of dimensionality and computational complexity.

A. Curse of dimensionality

High-dimensional FS is more prone to problems following
from insufficient sample size with respect to problem dimen-
sionality, although such situation can appear even in low-to-
mid-dimensional problems as is common, e.g., in economics
or medicine [16], where the number of observed cases is



often too limited. In cases of insufficient data sample size it
may be questioned what information about features is reliably
obtainable from the data at all [25]–[27]. The commonly
suggested work-around is to refrain from complex analysis of
feature subsets in favor of simpler FS methods or even trivial
feature ranking, also known as Best Individual Features (BIF)
method [28]–[30]. It is commonly assumed that ignoring inter-
feature dependencies is less harmful than obtaining misleading
information through serious estimation errors due to over-
fitting.

B. FS Computational Complexity

Computational complexity increases exponentially with the
problem dimensionality due to a growing number of possible
feature subset combinations (see Figure 1 for illustration). Op-
timal subset search methods are applicable roughly up to 40-
dimensional problems, sub-optimal methods based on various
forms of hill-climbing are applicable roughly with hundreds
of features. Very-high-dimensional FS problems effectively
prohibit the use of sophisticated subset optimization schemes.
Parallelized search can extend this limitation only to minor
extent [31]. This is another reason for the popularity of ranking
methods, which often constitute the only computationally
feasible option.

Wrapper-based FS [3] is considered not feasible in very-
high-dimensional FS, the common approach is filter-based.
Various correlation [32], [33] and information measures [17],
[34] have gained popularity in recent years due to favorable
trade-off between evaluation complexity and informational
ability, in addition to the traditional probabilistic FS criteria
[8].

C. Randomization

The exponential burden can be in some cases tackled by the
use of randomized methods, where the search process can be
user-restricted by a time limit. This is at the cost of optimality,
yet many methods are capable of providing sufficiently good
results. The Relief algorithm [35], [36] is based on a simple
idea of repeated randomized sampling of one pattern followed
by feature weights update according to the nearest-hit (same
class) and the nearest-miss (different class) neighbours. Relief
has proven to be very effective under various scenarios and as
such has been studied and extended in many ways [7], [37].

Genetic algorithms [38], [39], Tabu Search [39], [40] and
Simulated Annealing [39], [41] all implement a reasonably
strong optimization mechanism and can be used with arbitrary
FS criteria, but in very-high-dimensional setting may need
considerable time to converge. Hybrid randomized-greedy al-
gorithms have been shown better suited for high-dimensional
problems in some cases [42], [43]. Pure Monte Carlo meth-
ods can easily miss good solutions in high-dimensional FS
problems. The potential of randomized FS has been further
exploited by performing the complete FS process repeatedly
on various random subspaces to eventually combine the in-
formation about selected feature subsets into the final feature
ranking [44]. This approach randomly restricts evaluation of
inter-feature dependencies to reduce over-fitting.

Few methods of the above can cope with very high dimen-
sionality unless refraining from taking complex dependencies
among features into account.

D. This paper

The contribution of this paper consists in a novel approach
to feature selection, particularly suitable for high and very-
high dimensional pattern recognition problems. It utilizes
randomization and an arbitrarily chosen FS criterion function
to evaluate the average behavior of each feature over various
contexts. The proposed method will be shown computationally
very effective and capable of considerably over-performing the
common methods of choice in very-high-dimensional domain –
methods of BIF type. In this sense it notably extends the appli-
cability of complex feature subset evaluation functions that are
traditionally considered applicable with limited dimensionality
only (e.g., wrapper criteria, see above).

In Sections II to IV the new method is introduced. In
Section V we illustrate that the method generalizes well, i.e.,
is capable of improving recognition accuracy on independent
data as well as with multiple decision rules.

II. PRELIMINARIES

Assume a general pattern recognition problem (typically a
classification or clustering problem) in N -dimensional feature
space. In the particular case of classification, some objects
described by means of features f1, f2, . . . , fN (real valued
or discrete) are to be classified into one of a finite number
of mutually exclusive classes. The common initial step in
classifier design is to choose a reasonably small subset of
informative features by using a feature selection method.

Denoting F the set of all features

F = {f1, f2, . . . , fN} (1)

we assume that for each subset of features S ⊂ F a feature
selection criterion J(·) can be used as a measure of quality of
S (typically but not necessarily from the classification point of
view). According to standard FS paradigm the resulting feature
subset is obtained by maximizing J(S) over the class of all
subsets S ⊂ F .

Here we do not impose any restrictions on the function J(·)
except that we expect it to be capable of reflecting feature
behavior in context, i.e., it should provide more than just
combined information on individual feature merit.

A specific feature selection problem arises in case of very
high dimensionality, e.g., if N ≈ 103 ÷ 106 or even more.
Even the simplest sub-optimal optimization techniques are
exceedingly time-consuming in such cases and, consequently,
only very basic tools can be used to optimize features. The
common approach is a simple ranking of features based on the
individual feature quality (cf. BIF). By ordering the features
according to the inequality

J({fin−1}) ≤ J({fin}); n = 2, 3, . . . , N (2)

we can easily identify a subset of d individually best features
fiN−d+1

, fiN−d+2
, . . . , fiN but, in this way, we completely



ignore the potentionally crucial dependence among features
and the resulting subset thus may be far from optimal.

In this paper we attempt to generalize the idea of individ-
ually best ranking by evaluating the quality of each feature
repeatedly in the context of randomly chosen feature subsets.
In other words, we evaluate the quality J({fn} ∪ S) of
the subset {fn} ∪ S for sufficiently many random subsets
S ⊂ F, (fn /∈ S) and compare the corresponding mean value
with the analogous mean of J(S) for subsets S ⊂ F not
containing the feature fn, (i.e. fn /∈ S).

This idea is based on the intuitive assumption that “good”
features exhibit reasonably consistent behavior in context with
other features, that this information is obtainable easily enough
and that it can improve upon the information about individual
feature quality. An analogous mechanism has been shown
to perform well in Fast Branch & Bound algorithm [18],
where feature behavior is studied in variable context and the
averaged information is utilized to predict J(·) values, enabling
considerable acceleration of the search process.

III. DEPENDENCY-AWARE FEATURE RANK

The starting point of the proposed dependency-aware fea-
ture ranking is a randomly generated sequence of feature
subsets, to be denoted probe subsets

S = {S1, S2, . . . , SK}, Sj ⊂ F, j = 1, 2, . . . ,K, (3)

where each subset is evaluated by a criterion function J(·). The
cardinality of the subsets S ∈ S should vary and the resulting
sequence S should be long enough to “approximate” the class
of all possible subsets of F in a reasonably uniform way. For
each feature f ∈ F there should be enough subsets in S that
do contain it as well as enough subsets that don’t.

To generate a random probe subset we use the following
simple procedure: first the subset size d is randomly chosen so
that d ∈ [1,min{N, τ}] where τ ∈ [1, N ] is an optional user-
specified upper limit. Next, indexes of features to be selected
are randomly generated from [1, N ] as long as the number of
unique feature indexes is lower than d.

Another possibility to generate a random probe subset S ⊂
F is to decide the choice randomly for all possible features f ∈
F . In particular, assume that each feature f ∈ F is included
in the set S with probability p and it is not included with the
complementary probability (1−p). In this way the probability
that the resulting set contains exactly d features is polynomial

P{|S| = d} =

(
N

d

)
pd(1− p)(N−d), 0 ≤ d ≤ N, (4)

the mean number of features in the sets S is pN and the
resulting sets are bounded by the inequality 0 ≤ |S| ≤ N .
Note that by means of the probability p we can control the
mean number of features in S without any strict limits while
keeping the “natural” proportions of differently large subsets.

The required size of S as well as the role of parameter τ is
discussed in Section V and V-C.

A. Dependency-Aware Rank Definition

Given a sufficiently large sequence of feature subsets S,
we are interested to utilize the information contained in the
criterion values J(S1), J(S2), . . . , J(SK) in depth. Instead of
measuring the classification “power” of individual features f ∈
F , we compare the quality of probe subsets containing f with
the quality of probe subsets not including f .

A straightforward idea is to compute the mean quality μf

of subsets S ∈ S containing the considered feature f ∈ F

μf =
1

|Sf |
∑
S∈Sf

J(S), Sf = {S ∈ S : f ∈ S} (5)

and the mean quality μ̄f of subsets S ∈ S not containing the
considered feature f :

μ̄f =
1

|S̄f |
∑
S∈S̄f

J(S), S̄f = {S ∈ S : f /∈ S} (6)

with the aim to use the difference of both values as a criterion
for ranking the features:

DAF0(f) = μf − μ̄f , f ∈ F. (7)

Note that the “dependency aware” ranking criterion DAF0

does not measure the individual quality of a feature f ∈ F
separately by means of the criterion value J({f}), but takes
into account the quality of feature f in the context of other
features occurring in the sets S ∈ S. The value DAF0(f) can
be viewed as the average benefit of including the feature f
into the feature subsets S ∈ S.

An essential advantage of this approach is the computational
“economy” since each probe subset S ∈ S can be used in
the Eqs. (5) as many times as there are features in S and,
analogously, (N − |S|)-times in the Eqs. (6).

A question arises if the criterion DAF0 could be “refined”
for the sake of ranking comparisons. One possibility is to
compute the variances related to the mean values μf , μ̄f

σ2
f =

1

|Sf |
∑
S∈Sf

[J(S)− μf ]
2, f ∈ F (8)

σ̄2
f =

1

|S̄f |
∑
S∈S̄f

[J(S)− μ̄f ]
2, f ∈ F (9)

and to use them to norm Eq. (7), resulting in an expression
analogous to Mahalanobis univariate probabilistic inter-class
distance [8] in normal case:

DAF1(f) =
(μf − μ̄f )|S|

|Sf |σf + |S̄f |σ̄f
; f ∈ F. (10)

Another possibility is to norm directly the criterion values
J(S) because the variability of J(S) could be undesirably
influenced by the number of features |S|. Intuitively, the
variance of the criterion J(S) should change proportionately
to the size of S. In this sense, denoting μ(d), σ(d) the mean



and variance of the values J(S) for all subsets S ∈ S of
cardinality d,

μ(d) =
1

|S(d)|
∑

S∈S(d)

J(S), S(d) = {S ∈ S : |S| = d},

(11)

σ(d)2 =
1

|S(d)|
∑

S∈S(d)f

[J(S)− μ(d)]2, (12)

we can norm the criterion values J(S) directly in the Eqs. (5),
(6):

θf =
1

|Sf |
∑
S∈Sf

J(S)

σ(|S|) , f ∈ F, (13)

θ̄f =
1

|S̄f |
∑
S∈S̄f

J(S)

σ(|S|) , f ∈ F (14)

with the resulting ranking criterion

DAF2(f) = (θf − θ̄f ); f ∈ F. (15)

Note that, in view of the randomly generated sequence of
sets, one should be careful in computation of σ(d), when the
number of sets |S(d)| is small.

Remark: The simplest form of the ranking criterion
DAF0(f) is also well justifiable because there is actually no
strong reason to norm the variance of the criterion function
J(·) except as pre-causion against possibly misleading empha-
sis put on features that appear important but behave unstably.

IV. FEATURE SELECTION PROCEDURE

The proposed FS procedure based on DAF0 or DAF1

ranking requires a criterion J(·), an optional upper limit
τ of probe subsets’ cardinality, and the choice of stopping
condition. The straightforward stopping condition options are
a) time, or b) number of probe subsets to be generated, or c) a
requirement that each feature will be assesed based on at least
σ different subset evaluations:

min
f∈F

{|Sf |, |S̄f |} ≥ σ. (16)

Then the actual feature selection procedure is the same for all
DAFi rank criteria, i = 0, 1, 2:

1) generate sequence S of random probe subsets, where
for each subset S ∈ S the value J(S) is immediately
evaluated, until stopping condition is met

2) compute the value DAFi(f) for each feature f ∈ F

3) select required number of features with highest DAF i

values

Note that we do not address here the question of determin-
ing the correct final subset size, which in general is a difficult
problem out of scope of this paper. We suggest to follow the
same practices as with other FS methods that provide a ranking
of features.

Remark: From the computational complexity point of view
only Step 1 is to be concerned. Once the sequence S is
generated and all subsets S ∈ S evaluated by criterion J(·),
the computation of all DAFi rank criteria, i = 0, 1, 2, is of
negligible computational complexity.

TABLE I
DATA SETS USED IN EXPERIMENTS

Data Features Classes Samples Description
Reuters-21578 10105 33 8941 real text
Gisette 5000 2 1000 handwritten digits
Madelon 500 2 2000 artificial, non-linear
Spambase 57 2 4601 e-mails

V. EXPERIMETAL EVALUATION

To evaluate the proposed method we conduct a series of
experiments on four data sets (see Table I). In each experiment
the data is randomly split to 50% training and 50% testing
part with stratification, i.e., preserving relative class sizes. All
experiments are of wrapper type to show that the method
is usable in computationally demanding context – the FS
criterion J(·) has been the accuracy of k-Nearest Neighbor
classifier or Support Vector Machine (SVM) [45] estimated by
means of 3-fold cross-validation on training data part only. The
testing data part has been used only once for final verification
of classification accuracy on the selected subspace. If not
stated otherwise, all experiments have been repreated 20× with
different random train-test data splits. Thus, the solid lines in
Figures 2, 3, 4 and 5 show the achieved mean classification
accuracy for various final subset sizes over the trials while the
gray areas denote the respective standard deviations. Note that
SVM performance depends on parameters. To save time we
optimized SVM parameters only once per trial on the training
data part with all features before the actual FS took place. In
this sense there remains space for further improvement of the
presented results.

Remark: All experiments have been conducted using the
Feature Selection Toolbox 3 C++ framework’s1 concurrent FS
implementation on a multi-core Opteron server under Linux.

A. Data Sets

The Reuters-21578 data set is commonly used in text
categorization benchmarking.2 Our text preprocessing included
removing all non-alphabetic characters, ignoring all the words
that contained digits or non alpha-numeric characters, remov-
ing words from a stop-word list. We replaced each word by its
morphological root, removed all the words which had less than
three occurrences. After pre-processing the data set contained
33 classes of document-representing vectors of dimensionality
10105. The largest class contained 3924, the smallest only 19
non-zero documents.

The Gisette and Madelon datasets have been used in NIST
2003 feature selection challenge and are now available through
UCI Repository [46]. Gisette data represent two hardly distin-
guishable handwritten digits ’4’ and ’9’. Our experiments are
restricted to the subset of the original data intended originally
for verification. From the 5000 features 2500 are known to
have no predictive power.

Madelon is an artificial dataset known to contain 20 in-
formative features and 480 features with no predictive power.

1http://fst.utia.cz
2http://www.daviddlewis.com/resources/testcollections/reuters21578



TABLE II
SUMMARY OF CONDUCTED DAF EXPERIMENTS

Data Time thr- τ J(·) average average
limit eads evals. |Sf | |S̄f |

Reuters 200min 24 200 ∼148000 ∼1500 ∼146500
Gisette 200min 16 200 ∼46400 ∼950 ∼45450
Madelon 180min 16 150 ∼25000 ∼3600 ∼21400
Spambase 200min 8 57 ∼160000 ∼79500 ∼80500

The data is defined so that the class separation hyperplane is
multivariate and highly non-linear.

The Spambase dataset, available through UCI Reposi-
tory [46], is only 57-dimensional and as such is used here to
enable comparison with Sequential Forward Floating Selection
(SFFS) [47] procedure which is known to be capable of
yielding near-optimal or optimal results. It is, nevertheless, not
applicable with higher-dimensional problems due to computa-
tional complexity.

B. Results

Figures 2a, 3a, 4a and 5a show the achieved classification
accuracy on independent test data using the same classifier
that had been used in feature selection. Figures 2b, 3b, 4b and
5b test the same feature subsets using a different classifier. (In
Figure 2 the SVM has been used with linear kernel, in all other
cases with radial basis function kernel [45].) Figures 2c-e, 3c-
e, 4c-e and 5c-e show the stability properties of considered
FS procedures evaluated by various stability measures [48].
All stability measures yield values from [0, 1], higher stability
values are desirable indicate FS results less dependent on
particular data sampling.

If not stated otherwise, the stopping condition in each DAF
based experiment (each single trial of the 20 conducted) has
been set in form of time limit to 200 minutes run time. This is
very strict limitation especially in Reuters and Gisette cases in
view of the high dimensionality involved, but illustrates well
the suitability of DAF for such high-dimensional setting. In
cases of Reuters and Gisette the cardinality of probe subsets
generated in the course of DAF feature selection has been
limited by τ = 200, in case of Madelon by τ = 150, in case
of Spambase there was no limit (i.e., τ = N = 57). See
Table II for summary on the conducted search processes (per
one trial).

BIF time complexity has proved to be negligible. In the
slowest case of Reuters data it needed less than 5 minutes
per trial. In contrary, SFFS slows down rapidly with increas-
ing dimensionality. It needed 16 minutes per trial with 57-
dimensional Spambase data, but could not finish a single trial
in 5 days with 500-dimensional Madelon data.

In all experiments presented in Figures 2, 3, 4 and 5
the DAF based feature selection has performed considerably
better than individual feature ranking (BIF). Let us point out
the particular case of highly non-linear Madelon data, known to
contain exactly 20 informative features. In this case BIF failed
completely while the DAF methods succeeded in identifying
the right features (see Figure 4).

In case of Spambase data (Figure 5) we compare DAF and
BIF with SFFS that represents here a stronger but principally
slower optimizer. Figure 5a illustrates well the limits of DAF
ranking when compared to the strong optimizer SFFS, while in
contrary Figure 5b illustrates its advantage – DAF generalizes
better than SFFS in that its results are more usable in context
of a principally different classifier.

The reported stability of DAF methods (Figures 2c-e, 3c-
e, 4c-e and 5c-e) does not seem to be significantly different
from that of BIF (BIF is considered one of the most stable
FS methods [30]). In case of Madelon data DAF stability
is better due to complete BIF failure. Note the considerably
worse stability of SFFS in Figure 5c-e, confirming that stronger
optimization ability is here outweighed by strong over-fitting.

Remark: further experiments suggest that increasing DAF
search time from 200 to 400 minutes in case of Reuters data
improves classification accuracy by ∼ 1% when compared to
results presented in Figure 2.

C. Discussion

To investigate how the choice of stopping condition and the
optional τ probe subset cardinality limit affect DAF feature
selection performance we have conducted two supplemental
experiments on the 500-dimensional Madelon data.

Figure 6 illustrates the impact of changing DAF time limit
on the resulting feature subset performance. It can be seen
that roughly 2 hours suffice to make the most of the method
(compare to SFFS complexity in this case).

Figure 7 illustrates the impact of changing τ cardinality
limit. The importance of parameter τ appears less crucial,
except that too low values make it impossible to reveal multi-
feature dependencies to sufficient extent, while in contrary
too high values may make it impossible to distinguish feature
specific behavior in too wide a context. Specifically in case of
Reuters data we have observed that setting τ ≈ 103 ÷ 104 led
to poor DAF generalization performance. This is expectable
because attempting to reaveal dependencies among too many
features in case of insufficient sample size with respect to
dimensionality may easily lead to over-fitting.

Remark: The factor of importance in DAF based FS is
actually the achieved sizes of Sf and S̄f for all f ∈ F (see
Section III-A). Each feature f ∈ F is needed to be evaluated
in large enough number of contexts (random probe subsets
that do and do not contain it), otherwise its general behavior
can not be meaningfully estimated. Note that probe subsets
S ∈ S of lower cardinality can provide information about
lower number of features, yet this information is likely to
be more reliably estimated than in case of larger S. With
computationally complex J(·) criteria the setting of τ affects
the sizes of Sf and S̄f also indirectly. Given a constant time
limit, for lower τ values the criterion is evaluated on smaller
subsets faster and, thus, more times, while for higher τ the
opposite is true.

VI. CONCLUSION

A novel feature selection method denoted “dependency-
aware feature ranking” has been introduced. The rank is
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Fig. 3. 5000-dimensional Gisette Data – 3-NN-Wrapper feature selection results over 20 trials with different random train-test data splits. Classification accuracy
on independent data using a) 3-NN, b) SVM(rbf). Stability evaluated using c) CWrel, d) ATI , e) ANHI measures. (Search time 200 min.)

computed as the average benefit of including a feature into a
number of randomly generated feature subsets. The benefit is
expressed as the difference of mean criterion values computed

for subsets that do and do not contain the feature, based
on arbitrarily chosen feature selection criterion. This simple
idea has been shown well suitable for high and very-high-



feature subset size3
-N

N
-W

ra
p

p
e

r 
re

s
u

lt
s
 v

e
ri
fi
e

d
–

3
-N

N
 a

c
c
u

ra
c
y
 o

n
 i
n

d
e

p
e

n
d

e
n

t 
d

a
ta

BIF

DAF0 ≈ DAF1

DAF2

,5

0,55

0,6

0,65

0,7

0,75

0,8

0,85

0,9

5 15 25 35 45 60 80 10
0

14
0

18
0

23
0

30
0

feature subset size3
-N

N
-W

ra
p

p
e

r 
re

s
u

lt
s
 v

e
ri
fi
e

d
–

S
V

M
 a

c
c
u

ra
c
y
 o

n
 i
n

d
e

p
e

n
d

e
n

t 
d

a
ta

,5

0,55

0,6

0,65

0,7

0,75

0,8

0,85

0,9

5 15 25 35 45 60 80 10
0

14
0

18
0

23
0

30
0

a) b)

feature subset size

s
ta

b
ili

ty
 i
n

d
e

x
 C

W
re

l

0

0,2

0,4

0,6

0,8

1

5 15 25 35 45 60 80 10
0

14
0

18
0

23
0

30
0

feature subset size

s
ta

b
ili

ty
 i
n

d
e

x
A

T
I

0

0,2

0,4

0,6

0,8

1

5 15 25 35 45 60 80 10
0

14
0

18
0

23
0

30
0

feature subset size

s
ta

b
ili

ty
 i
n

d
e

x
A

N
H

I

0,5

0,6

0,7

0,8

0,9

1

5 15 25 35 45 60 80 10
0

14
0

18
0

23
0

30
0

c) d) e)

Fig. 4. 500-dimensional Madelon Data – 3-NN-Wrapper feature selection results over 20 trials with different random train-test data splits. Classification accuracy
on independent data using a) 3-NN, b) SVM(rbf). Stability evaluated using c) CWrel, d) ATI , e) ANHI measures. (Search time 180 min.)

dimensional feature selection problems where it is capable of
considerably over-performing the commonly used individual
feature ranking approaches due to its favorable mix of prop-
erties: the ability to reveal contextual information, reasonable
speed, and generalization ability.
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Fig. 5. 57-dimensional UCI Spambase Data – 3-NN-Wrapper feature selection results over 20 trials with different random train-test data splits. Classification
accuracy on independent data using a) 3-NN, b) SVM(rbf). Stability evaluated using c) CWrel, d) ATI , e) ANHI measures.
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[42] J. Novovičová, P. Somol, and P. Pudil, “Oscillating feature subset search
algorithm for text categorization,” in Structural, Syntactic, and Statistical
Pattern Recognition, vol. LNCS 4109. Berlin / Heidelberg, Germany:
Springer-Verlag, 2006, pp. 578–587.

[43] I. A. Gheyas and L. S. Smith, “Feature subset selection in large
dimensionality domains,” Pattern Recognition, vol. 43, no. 1, pp. 5 –
13, 2010.

[44] C. Lai, M. J. T. Reinders, and L. Wessels, “Random subspace method
for multivariate feature selection,” Pattern Recogn. Lett., vol. 27, no. 10,
pp. 1067–1076, 2006.

[45] C.-C. Chang and C.-J. Lin, LIBSVM: a library for SVM, 2001,
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[46] A. Asuncion and D. Newman, “UCI machine learning repository,
http://www.ics.uci.edu/ ∼mlearn/ mlrepository.html,” 2007. [Online].
Available: http://www.ics.uci.edu/∼mlearn/MLRepository.html
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[48] P. Somol and J. Novovičová, “Evaluating stability and comparing output
of feature selectors that optimize feature subset cardinality,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 32, no. 11, pp. 1921–1939, 2010.


	VZ_DAFR
	DAFR4_TR

